High School Geometry – Unit 1

Develop the ideas of congruence through constructions and transformations

Critical Area: In this Unit the notion of two-dimensional shapes as part of a generic plane (the Euclidean Plane) and exploration of transformations of this plane as a way to determine whether two shapes are congruent or similar are formalized. Students use transformations to prove geometric theorems. The definition of congruence in terms of rigid motions provides a broad understanding of this notion, and students explore the consequences of this definition in terms of congruence criteria and proofs of geometric theorems. Students develop the ideas of congruence and similarity through transformations.

CLUSTERS	COMMON CORE STÂTE STANDARDS	CPM Geometry	Resources
Make geometric construction Make a variety of formal geometric constructions using a variety of tools.	Geometry - Congruence G.CO.12 Make formal geometric constructions with a variety of tools and methods (compass and straightedge, string, reflective devices, paper folding, dynamic geometric software etc. Copying a segment, copying an angle; bisecting a segment; bisecting an angle; constructing perpendicular lines including the perpendicular bisector of a line segment; and constructing a line parallel to a give line through a point not on the line.	3.1.1, 5.2.1, 6.2.5, 7.1.1,7.1.2, 7.1.4, 7.2.1,7.2.2,8.1.1, 9.2.1- 9.2.4, 10.1.1- 10.1.5, 11.1.1-11.1.3 MN: 9.2.3 9-98, 9-104, 9-110, 9-113, 10-8	Materials:For Students: compass, protractor, straight-edge, string, reflective devices, tracing paper, graph paper and geometric software.For instruction: Document camera, LCD projector, screenTulare County Office of Education Hands-On Strategies for Transformational Geometry
	G.CO.13 Construct an equilateral triangle, a square, a regular hexagon inscribed in a circle.	9.2.1, 9.2.3, 9.2.4 9-67, 9-104	Websites: <u>Math Open Reference</u> <u>http://mathopenref.com/tocs/constructi</u> <u>onstoc.html</u> (online resource that illustrates how to generate constructions) <u>Math is Fun</u> <u>http://www.mathsisfun.com/geometry/</u> <u>constructions.html</u> H-G.CO.12, 13 <u>Engage New York</u> <u>Geometry-Module 1</u> pg 7 – 37 <u>Illustrative Mathematics</u>

LAUSD Secondary Mathematics

April 20, 2015 Draft

CLUSTERS	COMMON CORE STATE STANDARDS	CPM Geometry	Resources
			Make Formal Constructions More Constructions
Experiment with transformations in the plan Develop precise definitions of geometric figures based on the undefined notions of point, line, distance along a line and distance around a circular arc. Experiment with transformations in	 Geometry - Congruence G.CO.1 Know precise definitions of angle, circle, perpendicular lines, parallel lines, and line segment, based on the undefined notions of point, line, distance along a line, and distance around a circular arc. G.CO.2 Represent transformations in the plane using e.g. transparencies and geometry software; describe 	MN: 1.1.5, 1.2.5, 2.1.1, 2.1.2, 7.1.2, 7.1.4, 8.3.2, 10.1.1, 10.1.2 1.2.1–1.2.6, 3.1.1–3.1.3, 6.2.5 1-96, 1-102, 2-33, 3-17, 3-42, 5-90, 6-28, 9-23	Interactive http://www.shodor.org/interactivate/act ivities/Transmographer/ Illustrative Mathematics Fixed Points of rigid Motion Dilations and Distances Horizontal Stretch of Plane Mars Tasks: Aaron's Designs
the plane.	transformations as functions that take points in the plane as inputs and give other points as outputs. Compare transformations that preserve distance and angle to those that do not (e.g. translation versus horizontal stretch.) G.CO.3 Given a rectangle, parallelogram, trapezoid, or regular polygon, describe the rotations and reflections that carry it onto itself.	1.2.4–1.2.6 1-64, 2-129, 6-16, 6-65	Possible Triangle Constructions Transforming 2D Figures Mathematics Vision Project: Module 6: Congruence, Constructions and Proof Module 5: Geometric Figures Illuminations
	G.CO.4 Develop definitions of rotations, reflections, and translations in terms of angles, circles perpendicular lines, parallel lines, and line segments.	1.2.1–1.2.6 MN: 1.1.1, 1.2.2, 1.2.4 For applications in homework, see standard G-CO.5.	Security Camera Placement <u>Placing a Fire Hydrant</u> <u>Pizza Delivery Regions</u> <u>Perplexing Parallelograms</u>
	G.CO.5 Given a geometric figure and a rotation, reflection or translation, draw the transformed figure using e.g. graph paper, tracing paper, or geometry software. Specify a sequence of transformations that will carry a given figure onto another.	1.2.1–1.2.6, 6.2.5 1-85, 1-126, 2-20, 2-22, 2-64, 3-5, 3-69, 3-28, 6-52, 7-17	California Mathematics Project Transformational Geometry Teaching Channel Collaborative Work with Transformations

LAUSD Secondary Mathematics

CLUSTERS	COMMON CORE STATE STANDARDS	CPM Geometry	Resources
Understand congruence in terms of rigid motionsUse rigid motion to map corresponding parts of congruent triangle onto each other.Explain triangle congruence in terms 	Geometry - Congruence G.CO.6 Use geometric descriptions of rigid motions to transform figures and to predict the effect of a given rigid motion on a given figure; given two figures, use the definition of congruence in terms of rigid motions to decide if they are congruent.	Reflect on Background Knowledge 5.1 Angles of Triangles 1.2.1–1.2.6, 3-73, 6.1.1–6.1.3, 6.2.5 3-69, 3-76, 6-17, 6-26, 6-65. For applications of rigid motions in homework, see standard G-CO.5.	Illustrative Mathematics Understand Congruence in terms of Rigid Motion Is this a rectangle? Illuminations Triangle Classification
	G.CO.7 Use definition of congruence in terms of rigid motions to show that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent.	6.1.1–6.1.3 MN: 3.2.2 For applications in homework, see standard G-SRT.5.	Teaching Channel Formative Assessment: Understanding Congruence
	G.CO.8 Explain how the criteria for triangle congruence (ASA, SAS, and SSS) follow the definition of congruence in terms of rigid motions.	6.1.1–6.1.3 MN: 6.1.4 For applications in homework, see standard G-SRT.5.	
Prove geometric theorems Prove theorems about lines and angles, triangles; and parallelograms.	Geometry - Congruence G.CO.9 Prove theorems about lines and angles. Theorems include: vertical angles are congruent; when a transversal crosses parallel lines, alternate interior angles are congruent and corresponding angles are congruent; points on a perpendicular bisector of a line segment are exactly those equidistant from the segment's endpoints.	2.1.1–2.1.5, 9.2.1, 6.1.5 MN: 2.1.4, 2.1.5 Checkpoint 8 2-33, 6-62, 6-94, 7-67, 7-113, 7-124	Illustrative Mathematics https://www.illustrativemathematics.or g/content-standards/HSG/CO/B Mars Task: Evaluating Statements About Length and Area Illuminations:

CLUSTERS	COMMON CORE STATE STANDARDS	CPM Geometry	Resources
	G.CO.10 Prove theorems about triangles. Theorems include: measures of interior angles of a triangle sum to 180°; base angles of isosceles triangles are congruent; the segment joining midpoints of two sides of a triangle is parallel to the third side and half the length; the medians of a triangle meet at a point.	1-84, 2.1.4, 2.1.5, 5.2.1, 6.1.4, 6.1.5, 7.2.6, 9.2.4 MN: 2.2.1, 5.3.1, 7.2.6, 9.2.4 Checkpoint 8 2-20, 4-70, 6-46, 7-69, 7-134, 8-8, 8-30, 8-134, 9-33, 12-53	Perplexing Parallelograms
	G.CO.11 Prove theorems about parallelograms. Theorems include: opposite sides are congruent, opposite angles are congruent; the diagonals of a parallelogram bisect each other, and conversely, rectangles are parallelograms with congruent diagonals.	7.2.1–7.2.6 MN: 7.2.3, 7.2.4, 8.1.2, 9.2.2 7-32, 7-35, 7-100, 7-108, 7-113, 7-124, 7-155, 8-87	

Geometry – UNIT 2

Similarity, Right Triangles, and Trigonometry

Critical Area: Students investigate triangles and decide when they are similar. A more precise mathematical definition of similarity is given; the new definition taken for two objects being similar is that there is a sequence of similarity transformations that maps one exactly onto the other. Students explore the consequences of two triangles being similar: that they have congruent angles and that their side lengths are in the same proportion. Students prove the Pythagorean Theorem using triangle similarity.

CLUSTERS	COMMON CORE STATE STANDARDS	CPM Geometry	Resources
Understand similarity in terms of similarity transformations	Geometry - Similarity, Right Triangles, and Trigonometry G-SRT.1. Verify experimentally the properties of dilations given by a center and a scale factor: a. A dilation takes a line not passing through the center of the dilation to a parallel line, and leaves a line passing through the center unchanged. b. The dilation of a line segment is longer or shorter in the ratio given by the scale factor. G-SRT.2. Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain using similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides. G-SRT.3. Use the properties of similarity transformations to establish the Angle-Angle (AA) criterion for two triangles to be similar.	3.1.1, 3.1.2 MN: 3.1.1 3-5, 3-18, 3-46, 5-138, 9-113 3.1.2, 3.1.3 MN: 3.1.2, 3.1.1 3-5, 3-18, 3-29, 3-46, 3-80, 5-138, 9-113 3.1.2-3.1.4, 3.2.1, 3.2.4, 6.1.1, 6.1.2 MN: 3.1.4, 6.1.1 3-19, 3-42, 3-54, 3-55, 3-69, 3-113, 5-58, 7-60 3.2.1 3-54, 3-90, 3-99, 3-122, 4-7	Mars Tasks : Hopwell Geometry – G.SRT.5 Inscribing and Circumscribing Right Triangles – G.SRT: Analyzing Congruence Proofs CPALMS Dilation Transformation Illustrative Mathematics Similar Triangles : G-SRT.3 Pythagorean Theorem : G-SRT.4 Joining two midpoints of sides of a triangle : G-SRT.4 Teaching Channel : Challeging Students to Discover Pythagoras How tall is the Flagpole Mathematics Vision Project Module 6 : Similarity and Right Triangle Trigonometry
	Geometry - Similarity, Right		Khan Academy

Prove theorems involving similarity	Triangles, and Trigonometry		https://www.khanacademy.org/math/g
	G-SRT.4. Prove theorems about	3-39, 3-74, 3-107	eometry/right_triangles_topic/pythago
	triangles. Theorems include: a line		rean_proofs/e/pythagorean-theorem-
	parallel to one side of a triangle		<u>proofs</u>
	divides the other two proportionally, and conversely; the Pythagorean	3.1.4, 3.2.1–3.2.6, 6.1.1–6.1.5,	Math is Fun
	Theorem proved using triangle	7.2.6, 8.2.1, 8.2.2	http://www.mathsisfun.com/geometry/
Apply geometric concepts in	similarity.	MN: 3.2.1, 3.2.5, 6.1.4, 7.1.3,	pythagorean-theorem-proof.html
modeling situations	G-SRT.5 . Use congruence and	7.2.1, 8.2.1	pythagorean-theorem-proor.num
modeling situations	similarity criteria for triangles to solve	Checkpoint 6	NCTM Illuminations
	problems and to prove relationships in	3-99, 3-122, 4-70, 4-118, 5-23,	Understanding the Pythagorean
	geometric figures	5-65, 6-47, 6-58, 7-6, 7-31, 7-102,	Relationship
	8	8-22, 8-30, 8-63, 8-87, 8-118, 9-20,	
	Supporting clusters:	9-71, 11-101	Mars Task:
	G-MG 1-3 : Modeling with Geometry:		Solving Geometry Problems:
	Apply geometric concepts	6.2.1, 6.2.3, 8.3.3, 9.1.3–9.1.5,	<u>Floodlights</u>
	in modeling situations	10.1.1, 10.1.2, 11.1.2–11.1.5,	Proofs of Pythagorean Theorem
		11.2.1, 11.2.2	The Pythagorean Theorem: Square
		11-72, 12-21, 12-112	Areas
		9-69	Finding Shortest Routes: The
		9-40, 9-57, 9-93, 9-114	Schoolyard Problem
		6.2.1, 6.2.3, 7.1.3, 8.3.3, 12.2.2-	
		12.2.4	
		7-84, 8-52, 8-115	Modeling Task:
			Mars Task:
			Estimating: Counting Trees
			Inside Mathematics
			William's Polygon

High School Geometry – Unit 3

Express Geometric Properties with Equations; Extend Similarity to Circles

Critical Area: Students investigate triangles and decide when they are similar; with this newfound knowledge and their prior understanding of proportional relationships, they define trigonometric ratios and solve problems using right triangles. They investigate circles and prove theorems about them. Connecting to their prior experience with the coordinate plane, they prove geometric theorems using coordinates and describe shapes with equations. Students extend their knowledge of area and volume formulas to those for circles, cylinders and other rounded shapes. They prove theorems, both with and without the use of coordinates.

CLUSTERS	COMMON CORE STATE STANDARDS	CPM Geometry	Resources
Use coordinates to prove simple geometric theorems algebraically	Geometry - Expressing Geometric Properties with Equations G.GPE.4. Use coordinates to prove simple geometric theorems algebraically. For example, prove or disprove that a figure defined by four given points in the coordinate plane is a rectangle; prove or disprove that the point $(1, \sqrt{3})$ lies on the circle centered at the origin and containing the point $(0, 2)$. G.GPE.5. Prove the slope criteria for parallel and perpendicular lines and use them to solve geometric problems (e.g., find the equation of a line parallel or perpendicular to a given line that passes through a given point). G.GPE.6. Find the point on a dire cted line segment between two given points that partitions the segment in a given ratio. G.GPE.7. Use coordinates to compute perimeters of polygons and areas of triangles and rectangles, e.g., using the distance formula. \star	7.3.1–7.3.3, 12.2.1 7-35, 7-153, 8-119, 12-23, 12-31, 12-45 1.2.3, 7.3.1 MN: 1.2.6, 7.3.2 1-105, 2-42, 2-45, 2-69, 3-89, 5-132, 7-131, 10-37 7.3.2 MN: 7.3.3 8-32, 7-140, 8-98 6.2.2, 7.3.1–7.3.3 2-32, 2-106, 4-119, 5-147, 7-35, 8-71, 8-131	 Materials: Compass, straight-edge, graph paper, reflective surface, protractor, tracing paper, scissors, tape. Geometer's Sketchpad or other software. Geogebra Software Mathematics Vision Project Module 7: Connecting Algebra and Geometry Mars Task: Finding Equations of Parallel and Perpendicular Lines
Understand and apply theorems about circles	Geometry - Circles G.C.1 . Prove that all circles are	3-55	Illustrative Mathematics Right triangles inscribed in circles II:

LAUSD Secondary Mathematics

April 20, 2015 Draft

Find arc lengths and areas of sectors of circles	 similar. G.C.2. Identify and describe relationships among inscribed angles, radii, and chords. <i>Include the</i> relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle. G.C.3. Construct the inscribed and circumscribed circles of a triangle, and prove properties of angles for a quadrilateral inscribed in a circle. G.C.5. Derive using similarity the fact that the length of the arc intercepted by an angle is proportional to the radius, and define the radian measure of the angle as the constant of proportionality; derive the formula for the area of a sector. Convert between degrees and radians. CA 	10.1.1–10.1.5, 11.2.2, 11.2.3 MN: 10.1.3, 10.1.4, 11.2.3 10-18, 10-20, 11-29, 11-111, 11-117, 12-11, 12-52, 12-93, 12-115 9.2.1, 9.2.4, 10.1.5, 10-28, 10-42 MN: 10.1.5 10-78 8.3.2, 10.1.2, 10-55 MN: 8.3.3 10-32, 10-83, 10-104	G.C.2aInscribing a triangle in a circle :G.C.3aTwo Wheels and a Belt : G.C. BEqual Area Triangles on the SameBase II : G.GPE.5bMars Tasks:Sectors of CirclesInside Mathematics:What's My Angle?
Translate between the geometric description and the equation for a conic section	 Geometry - Expressing Geometric Properties with Equations G.GPE.1. Derive the equation of a circle of given center and radius using the Pythagorean Theorem; complete the square to find the center and radius of a circle given by an equation. G.GPE.2. Derive the equation of a parabola given a focus and directrix. 	12.1.1, 12.1.2 MN: 12.1.3 12-24, 12-51, 12-105, 12-10 12.1.4	Illustrative Mathematics Explaining the equation for a Circle Slopes and Circles Defining Parabolas Geometrically Mars Task: Equations of Circles 1 Equations of Circles 2

High School Geometry – UNIT 4 Trigonometry; Measurement and Dimensions; Statistics and Probability

Critical Area: Students explore probability concepts and use probability in real-world situations. They continue their development of statistics and probability, students investigate probability concepts in precise terms, including the independence of events and conditional probability. They explore right triangle trigonometry, and circles and parabolas. Throughout the course, Mathematical Practice 3, "Construct viable arguments and critique the reasoning of others," plays a predominant role. Students advance their knowledge of right triangle trigonometry by applying trigonometric ratios in non-right triangles.

CLUSTERS	COMMON CORE STATE STANDARDS	CPM Geometry	Resources
Define trigonometric ratios and solve problems involving right triangles.	Geometry - Similarity, Right Triangles, and Trigonometry G.SRT.6 Understand that by similarity, side ratios in right triangles are properties of the angles in the triangle, leading to definitions of trigonometric ratios for acute angles.	4.1.1–4.1.4, 5.1.1–5.1.3 MN: 4.1.2, 4.1.4, 5.1.2, 5.1.4 For applications in homework, see standards G-SRT.7 and G-SRT.8.	Illustrative MathematicsDefining Trigonometric Ratios:G.SRT.6Sine and Cosine of ComplementaryAngles: G.SRT.7Shortest line segment from a point Pto a line L: G.SRT.8
	G.SRT.7 Explain and use the relationship between the sine and cosine of complementary angles.	5.1.2 5-14, 5-46, 8-110	Mars Task: Modeling Rolling Cups
	G.SRT.8 Use trigonometric ratios and the Pythagorean Theorem to solve right triangles in applied problems.	2.3.2, 4.1.4, 4.1.5, 5.1.1–5.1.4, 5.2.1, 5.2.2, 5.3.1, 5.3.5 MN: 2.3.2 Checkpoint 7	Inside Mathematics: Circular Reasoning
	G.SRT.8.1 Derive and use the trigonometric ratios for special right triangles (30°,60°,90°and 45°,45°,90°). CA	4-43, 4-50, 4-124, 5-18, 5-137, 7-78, 8-77, 12-10	
Explain volume formulas and use them to solve problems	Geometric Measurement and Dimension G.GMD.1 Give an informal argument for the formulas for the circumference	8.1.2–8.1.5, 8.3.1, 8.3.2, 9.1.1– 9.1.3, 11.1.2–11.1.5	Illustrative Mathematics Doctor's Appointment: G.GMD.3 Centerpiece: G.GMD.3

LAUSD Secondary Mathematics

April 20, 2015 Draft

Visualize relationships between two- dimensional and three-dimensional objects.	of a circle, area of a circle, volume of a cylinder, pyramid, and cone. <i>Use</i> <i>dissection arguments, Cavalieri's</i> <i>principle, and informal limit</i> <i>arguments.</i> G.GMD.3 Use volume formulas for cylinders, pyramids, cones, and spheres to solve problems.	MN: 9.1.3, 9.1.5 9.1.3–9.1.5, 11.1.3–11.1.5 MN: 11.1.4, 11.1.5, 11.2.2 Checkpoint 11 9-83, 9-103, 11-100, 11-102, 11-118, 11-128, 12-40, 12-54	Area of a circle: G.GMD.1 Global Positioning System: G.GMD.4, A.CED.2 Circumference of a Circle Volume formulas for Cylinder and prims Illuminations Trigonometry for Solving Problems
	 G.GMD.4 Identify the shapes of two-dimensional cross-sections of three-dimensional objects, and identify three-dimensional objects generated by rotations of two-dimensional objects. G.GMD.5 Know that the effect of a scale factor k greater than zero on length, area, and volume is to multiply each by k, k², and k³, respectively; determine length, area and volume measures using scale factors. CA G.GMD.6 Verify experimentally that in a triangle, angles opposite longer sides are larger, sides opposite larger angles are longer, and the sum of any two side lengths is greater than the remaining side length; apply these relationships to solve real-world and mathematical problems. CA 	1.2.1, 11.1.3, 12.1.3, 12.1.4 MN: 11.1.3, 12.1.4 1-58, 11-13, 11-39, 11-42, 11-61, 12-42 n/a	Mathematics Vision Project: Circles a Geometric Perspective Mars Task: Evaluating Statements About Enlargements (2D & 3D) 2D Representations of 3D Objects Calculating Volume of Compound Objects Modeling: Making Matchsticks Estimating and Sampling: Jellybeans

Understand independence and	Statistics and Probability -		Illustrative Mathematics
conditional probability and use	Conditional Probability and the		
them to interpret data (Link to data	Rules of Probability		Statistics and Probability- Conditional
from simulations or experiments.)		4.2.1-4.2.4	Probability and the rules of Probability
	S.CP.1 Describe events as subsets		Rain and Lightning:S.CP.2,3,5, and 7
	of a sample space (the set of	MN: 1.2.1, 4.2.3, 4.2.4	Lucky Envelopes: S.CP.3
	outcomes) using characteristics	Checkpoint 9A	Random Walk: S.CP.9
	(or categories) of the outcomes,	5-45, 5-145, 5-149, 10-190, 11-129	Kandoni Wark. S.Cl
	or as unions, intersections, or		
	complements of other events		Mathematics Vision Project:
	("or," "and," "not").		
			Module 9: Probability
	S.CP.2 Understand that two events	10.2.3	
	A and B are independent if the	MN: 10.2.3	
	probability of <i>A</i> and <i>B</i> occurring	10-131, 10-142, 10-176, 11-112	Mars Task:
	together is the product of their		
	probabilities, and use this characterization to determine if		Probability Games
			Modeling Conditional Probabilities 1:
	they are independent.		Lucky Dip
	S.CP.3 Understand the conditional	10.2.1–10.2.3	<u>Latery Dip</u>
	probability of A given B as $P(A)$	MN: 4.1.5, 10.2.3	
	and $B)/P(B)$, and interpret	10-116, 10-117, 10-130, 10-176,	
	independence of A and B as	10-188, 10-190, 11-112, 11-126	Georgia Standards:
	saying that the conditional		Unit 7: Applications on Probability
	probability of A given B is the		
	same as the probability of A, and		Inside Mathematics:
	the conditional probability of B		
	given A is the same as the		Friends You Can Count On
	probability of B .		Got Your Number
		10.2.2, 10.2.3	
	S.CP.4 Construct and interpret two-	10-101, 10-102, 10-117, 10-130,	
	way frequency tables of data		

	when two categories are	10-176, 11-88	
	associated with each object	10-170, 11-00	
	being classified. Use the two-		
	e		
	way table as a sample space to		
	decide if events are independent		
	and to approximate conditional		
	probabilities. For example,		
	collect data from a random		
	sample of students in your		
	school on their favorite subject		
	among math, science, and		
	English. Estimate the		
	probability that a randomly		
	selected student from your		
	school will favor science given		
	that the student is in tenth		
	grade. Do the same for other		
	subjects and compare the		
	results.		
		10.2.1–10.2.3	
	S.CP.5 Recognize and explain the	10-85, 10-101, 10-102, 10-116,	
	concepts of conditional	10-117, 10-176, 10-188, 10-190,	
	probability and independence in	11-88	
	everyday language and everyday situations.		
	everyday situations.		
Use the rules of probability to	Statistics and Probability -		
compute probabilities of compound	Conditional Probability and the		
events in a uniform probability	Rules of Probability		
model			
	S.CP.6 Find the conditional	10.2.1–10.2.3	
	probability of A given B as the	MN: 10.2.3	
	fraction of <i>B</i> 's outcomes that	10-85, 10-101, 10-117, 10-188,	
	also belong to A, and interpret		

the answer in terms of the model.	10-190	
S.CP.7 Apply the Addition Rule, P(A or B) = P(A) + P(B) - P(A and B), and interpret the answer in terms of the model.	4.2.3, 10.2.3 4-116, 5-10, 5-32, 5-55, 5-151, 11-129	Inside Mathematics:
S.CP.8 (+) Apply the general Multiplication Rule in a uniform probability model, P(A and B) = P(A)P(B A) = P(B)P(A B), and interpret the answer in terms of the model.	10.2.3 See S-CP.2 and S-CP.3 for applications of the Multiplication Rule.	<u>Rod Trains</u>
S.CP.9 (+) Use permutations and combinations to compute probabilities of compound events and solve problems.	10.3.1–10.3.5 MN: 10.3.1, 10.3.2, 10.3.3, 10.3.5 10-129, 10-1453, 10-155, 10-159, 10-179, 10-180, 10-187, 10-189, 11-59, 11-119, 11-127, 12-90	